Contribution of Components of Green Supply Chain Execution-Logistics In Green Supply Chain Performance Measurement-A Pilot Empirical Study of The Indian Automobile Manufacturing Sector

Mohd. Asif Gandhi¹

¹Department Of Mechanical Engineering, Anjumain-I-Islam's Kalsekar Technical Campus, School Of Engineering And Technology, Mumbai University, India

Abstract : This paper is one of the several extensions of the research works done by [5]. Green Supply Chain Practices have been known to have an impact on Green Supply Chain Performance [5]. This paper tests empirically through a pilot study of the Indian Automobile Manufacturing Sector, the contribution of the twelve variables constituting the construct Green Supply Chain Execution-Logistics in Green Supply Chain Performance measurement. Also the paper establishes the reliability of the questionnaire instrument developed previously for measuring the construct Green Supply Chain Execution-Logistics and also for measuring the twelve variables that constitute the construct Green Supply Chain Execution-Logistics. Further the paper establishes the correlation among these twelve variables. Finally this paper conducts Confirmatory Factor Analysis (CFA) to arrive at three factor (linear combination of twelve variables constituting the construct Green Supply Chain Execution-Logistics) to aid in measuring the construct Green Supply Chain Execution-Logistics. Finally the paper establishes the order of contribution of the twelve variables constituting the construct Green Supply Chain Execution-Logistics.

Keywords: Automobile, CFA, Green Supply Chain Execution-Logistics, Green Supply Chain Performance, Green Supply Chain Practices, Indian, Manufacturing Sector, Pilot Study.

I. Introduction

Green Supply Chain Execution-Logistics has been identified as one of the ten Green Supply Chain Performance measures which are impacted by five Green Supply Chain Practices [5]. Accordingly, this paper identifies the variables constituting the construct Green Supply Chain Execution-Logistics [5]. Green Supply Chain Execution-Logistics in turn is a sub-construct of the main construct Green Supply Chain Performance. Since Green Supply Chain Execution-Logistics has been identified as being constituted of twelve variables, it is of interest to know how these twelve variables fare in the pilot empirical study of the Indian automobile manufacturing sector by means of a questionnaire instrument [5]. It is also of interest to know the order of contribution of these twelve variables constituting the construct Green Supply Chain Execution-Logistics. The 50 automobile manufacturing plants that were surveyed during the pilot empirical study are among the ones listed in [2]. The survey methodology was used in line with the findings of [3].

II. The Research Questions Addressed

The six research questions addressed are as follows:

Research Question 1. To have a feel of the responses of the Indian Automobile Manufacturing Sector pertaining to the twelve variables constituting the construct Green Supply Chain Execution-Logistics. Research Question 2. To know the reliability of the questionnaire instrument for measuring the construct Green Supply Chain Execution-Logistics. Research Question 3. To know the reliability of the questionnaire instrument for measuring the twelve variables constituting the construct Green Supply Chain Execution-Logistics. Research Question 4. How are the twelve variables constituting the construct Green Supply Chain Execution-Logistics? Research Question 5. How many factors are retained by the twelve variables constituting the construct Green Supply Chain Execution-Logistics?

Research Question 6. What is the order of contribution of the twelve variables constituting the construct Green Supply Chain Execution-Logistics?

III. The Construct Green Supply Chain Carbon Execution-Logistics And Its Twelve Component Variables Used In The Study

There are twelve variables that constitute the construct Green Supply Chain Execution-Logistics. They are depicted in Table 1 in their abbreviated form.

The												
twelve												
variabl												
es												
constit												
uting												
the												
constr	GSCEX	GSCEXL	GSCEXL	GSCEXL								
uct	LOG1	LOG2	LOG3	LOG4	LOG5	LOG6	LOG7	LOG8	LOG9	OG10	OG11	OG12
Green												
Supply												
Chain												
Execut												
ion-												
Logisti												
CS												

Table 1. The seven variables constituting the construct Green Supply Chain Execution-Logistics

IV. The Descriptive Statistics Of The Scaled Data On Green Supply Chain Execution-Logistics

A five point balanced Likert scale was used to scale the data from respondents on whom a questionnaire was administered. The respondents were employees of Indian automobile manufacturing firms and /or their plants as mentioned in [2]. The data collected revealed the following descriptive statistics of the twelve variables constituting the construct Green Supply Chain Execution-Logistics.

Table 2. Descriptive Statistics of the data scaled by the questionnaire on Green Supply Chain Execution-

Logistics											
Simple Statistics											
Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum					
GSCEXLOG1	50	3.56000	1.32727	178.00000	1.00000	5.00000					
GSCEXLOG2	50	2.34000	1.00224	117.00000	1.00000	5.00000					
GSCEXLOG3	50	4.42000	0.70247	221.00000	2.00000	5.00000					
GSCEXLOG4	50	4.28000	0.67128	214.00000	2.00000	5.00000					
GSCEXLOG5	50	4.50000	0.50508	225.00000	4.00000	5.00000					
GSCEXLOG6	50	4.00000	1.03016	200.00000	2.00000	5.00000					
GSCEXLOG7	50	4.00000	0.83299	200.00000	3.00000	5.00000					
GSCEXLOG8	50	4.84000	0.37033	242.00000	4.00000	5.00000					
GSCEXLOG9	50	4.74000	0.66425	237.00000	1.00000	5.00000					
GSCEXLOG10	50	4.54000	0.78792	227.00000	2.00000	5.00000					
GSCEXLOG11	50	4.56000	0.86094	228.00000	1.00000	5.00000					
GSCEXLOG12	50	4.60000	0.69985	230.00000	1.00000	5.00000					

V. The Reliability Of The Instrument For The Variables And Construct Used

The reliability of the questionnaire instrument developed by [5] for the construct Green Supply Chain Execution-Logistics is shown in the Table 3 as 0.817626 which is considered to be a very good indicator of excellent internal consistency reliability [4].

Table 3. Reliability by Cronbach's Coefficient Alpha for the construct Green Supply Chain Carbon

_
Management

Cronbach Coefficient Alpha							
Variables	Alpha						
Raw	0.775143						
Standardized	0.817626						

The reliability of the questionnaire for the twelve variables that constitute the construct Green Supply Chain Execution-Logistics is shown in Table 4. All the seven variables in Table 4 have a reliability ranging from 0.7 to greater than 0.9 but less than 1. The variables GSCEXLOG1, GSCEXLOG2, GSCEXLOG7, GSCEXLOG9, GSCEXLOG12 have their reliability between 0.7 and 0.8 which is considered to be a very good indicator of internal consistency reliability [4]. The variables GSCEXLOG3, GSCEXLOG4, GSCEXLOG5,

GSCEXLOG6, GSCEXLOG8, GSCEXLOG10, GSCEXLOG11 have their reliabilities between 0.7 and 0.8 which is considered to be an acceptable measure of internal consistency reliability [4].

Table 4. Reliabili	ty of the variables constituting the construct Green Supply	Chain Execution-Logistics
	Cropbach Coefficient Alpha with Deleted Variable	

Cronbach Coefficient Alpha with Deleted Variable										
Dalatad	Raw V	ariables	Standardized Variables							
Variable	Correlation with Total	Alpha	Correlation with Total Al 45488 0.511389 0.80 48567 0.426242 0.87 32131 0.761078 0.77 25593 0.807071 0.77 48082 0.629683 0.79 31793 0.661633 0.78 44880 0.490643 0.80 63719 0.543171 0.79	Alpha						
GSCEXLOG1	0.556139	0.745488	0.511389	0.800505						
GSCEXLOG2	0.366652	0.848567	0.426242	0.872194						
GSCEXLOG3	0.709386	0.732131	0.761078	0.777953						
GSCEXLOG4	0.796436	0.725593	0.807071	0.773627						
GSCEXLOG5	0.642553	0.748082	0.629683	0.790015						
GSCEXLOG6	0.624186	0.731793	0.661633	0.787122						
GSCEXLOG7	0.545461	0.744880	0.490643	0.802310						
GSCEXLOG8	0.477047	0.763719	0.543171	0.797721						
GSCEXLOG9	0.292585	0.770607	0.353161	0.814003						
GSCEXLOG10	0.484733	0.752139	0.557437	0.796463						
GSCEXLOG11	0.523109	0.747010	0.568229	0.795508						
GSCEXLOG12	0.333814	0.767157	0.332160	0.815749						

VI. The Pearson's Correlation Coefficient Among The Variables Used In The Study

The Pearson's Correlation coefficient between different pairs of variables that constitute the construct Green Supply Chain Execution-Logistics is shown in Table 5. Since all the values of correlation coefficient are positive, it indicates that all the twelve variables that make up the construct Green Supply Chain Execution-Logistics are oriented towards the goal of Green Supply Chain Execution-Logistics in a unidirectional manner. This is also an indicator of internal consistency reliability.

Table 5. Pearson's Correlation coefficient among the twelve variables of Green Supply Chain Execution-

					Log	gistics						
Pearson Correlation Coefficients, N = 50												
Prob > r under H0: Rho=0												
	GLog1 GLog2 GLog3 GLog4 GLog5 GLog6 GLog7 GLog8 GLog9 GLog10 GLog11 GLog1											
GSCEXLOG1	1.00000	0.25283	0.22414	0.46178	0.36532	0.26867	0.55377	0.10297	0.01667	0.17329	0.39863	0.46577
		0.0765	0.1176	0.0007	0.0091	0.0592	<.0001	0.4767	0.9085	0.2288	0.0041	0.0007
GSCEXLOG2	0.25283	1.00000	0.23595	0.20506	0.06047	0.25696	0.07333	0.40029	0.63088	0.59905	0.48533	0.55863
	0.0765		0.0990	0.1531	0.6765	0.0716	0.6128	0.0040	<.0001	<.0001	0.0004	<.0001
GSCEXLOG3	0.22414	0.23595	1.00000	0.87076	0.83404	0.81784	0.59290	0.57738	0.19506	0.39305	0.37928	0.01660
	0.1176	0.0990		<.0001	<.0001	<.0001	<.0001	<.0001	0.1746	0.0047	0.0066	0.9089
GSCEXLOG4	0.46178	0.20506	0.87076	1.00000	0.66212	0.64926	0.62045	0.51227	0.12083	0.55717	0.46471	0.19983
	0.0007	0.1531	<.0001		<.0001	<.0001	<.0001	0.0001	0.4032	<.0001	0.0007	0.1641
GSCEXLOG5	0.36532	0.06047	0.83404	0.66212	1.00000	0.82369	0.82462	0.43644	0.09124	0.02564	0.04693	0.11547
	0.0091	0.6765	<.0001	<.0001		<.0001	<.0001	0.0015	0.5286	0.8597	0.7462	0.4246
GSCEXLOG6	0.26867	0.25696	0.81784	0.64926	0.82369	1.00000	0.78482	0.21398	0.35789	0.27657	0.20709	0.02831
	0.0592	0.0716	<.0001	<.0001	<.0001		<.0001	0.1357	0.0107	0.0519	0.1490	0.8453
GSCEXLOG7	0.55377	0.07333	0.59290	0.62045	0.82462	0.78482	1.00000	0.00000	0.03688	0.03109	0.11383	0.14003
	<.0001	0.6128	<.0001	<.0001	<.0001	<.0001		1.0000	0.7993	0.8303	0.4312	0.3321
GSCEXLOG8	0.10297	0.40029	0.57738	0.51227	0.43644	0.21398	0.00000	1.00000	0.49114	0.58191	0.54280	0.37796
	0.4767	0.0040	<.0001	0.0001	0.0015	0.1357	1.0000		0.0003	<.0001	<.0001	0.0068
GSCEXLOG9	0.01667	0.63088	0.19506	0.12083	0.09124	0.35789	0.03688	0.49114	1.00000	0.74166	0.50960	0.47412
	0.9085	<.0001	0.1746	0.4032	0.5286	0.0107	0.7993	0.0003		<.0001	0.0002	0.0005
GSCEXLOG10	0.17329	0.59905	0.39305	0.55717	0.02564	0.27657	0.03109	0.58191	0.74166	1.00000	0.77860	0.62176
	0.2288	<.0001	0.0047	<.0001	0.8597	0.0519	0.8303	<.0001	<.0001		<.0001	<.0001
GSCEXLOG11	0.39863	0.48533	0.37928	0.46471	0.04693	0.20709	0.11383	0.54280	0.50960	0.77860	1.00000	0.85354
	0.0041	0.0004	0.0066	0.0007	0.7462	0.1490	0.4312	<.0001	0.0002	<.0001		<.0001
GSCEXLOG12	0.46577	0.55863	0.01660	0.19983	0.11547	0.02831	0.14003	0.37796	0.47412	0.62176	0.85354	1.00000
	0.0007	<.0001	0.9089	0.1641	0.4246	0.8453	0.3321	0.0068	0.0005	<.0001	<.0001	

VII. Factor Analysis

Using statistical analysis software called SAS 9.2; Confirmatory Factor Analysis (CFA) was conducted on the construct Green Supply Chain Execution-Logistics which consists of twelve variables. Principal Component method was used as the initial factor method. Accordingly the Eigenvalues were obtained as shown in the Table 6.

	Eigenvalues of the Correlation Matrix: $Total = 12$ Average = 1								
	Eigenvalue	Difference	Proportion	Cumulative					
1	5.19305456	1.96093937	0.4328	0.4328					
2	3.23211519	1.77312315	0.2693	0.7021					
3	1.45899204	0.60437001	0.1216	0.8237					
4	0.85462203	0.33443492	0.0712	0.8949					
5	0.52018710	0.05607042	0.0433	0.9382					
6	0.46411668	0.18720429	0.0387	0.9769					
7	0.27691239	0.27691239	0.0231	1.0000					
8	0.00000000	0.00000000	0.0000	1.0000					
9	0.00000000	0.00000000	0.0000	1.0000					
10	0.00000000	0.00000000	0.0000	1.0000					
11	0.00000000	0.00000000	0.0000	1.0000					
12	0.00000000		0.0000	1.0000					

Table 6. Eigen values obtained by using Principal Components Method as the initial factor method.

An Eigen value indicate the relative importance of each factor in accounting for the particular set of variables being analysed. From Table 6 it is clear that the first factor can explain 5.19305456 variables. The second factor can explain 3.23211519 variables. The third factor can explain 1.45899204 variables. No other factor in Table 6 can explain at least one variable. Hence three factors will be retained by MINEIGEN criterion as the only factors as shown by the factor pattern of Table 7. The variance explained by the by the three factors is 5.19305456, 3.23211519 and 1.45899204 respectively.

Table7. Factor pattern obtained for the three factors retained by MINEIGEN criterion

Factor Pattern									
	Factor1	Factor2	Factor3						
GSCEXLOG1	0.44794	0.22271	0.83868						
GSCEXLOG2	-0.50762	0.54188	0.42232						
GSCEXLOG3	0.83492	0.39161	-0.21125						
GSCEXLOG4	0.84399	0.29172	0.10332						
GSCEXLOG5	0.67675	0.65694	-0.13237						
GSCEXLOG6	0.74548	0.48050	-0.23021						
GSCEXLOG7	0.52019	0.75703	0.12438						
GSCEXLOG8	0.68700	-0.25460	-0.18252						
GSCEXLOG9	0.56085	-0.52466	-0.30879						
GSCEXLOG10	0.72750	-0.55395	-0.02650						
GSCEXLOG11	0.69347	-0.56277	0.31139						
GSCEXLOG12	0.49426	-0.67174	0.45785						

The final communality estimates for the twelve variables constituting the construct Green Supply Chain Execution-Logistics are shown in Table 8.

Table 8. The final communality estimates for Green Supply Cha	ain Execution-Logistics
---	-------------------------

	Final Communality Estimates: Total = 9.884162										
GSCEX LOG1	GSCE XLOG 2	GSC EXL OG3	GSCEX LOG4	GSCEX LOG5	GSCEX LOG6	GSCEX LOG7	GSCEX LOG8	GSCEX LOG9	GSCEX LOG10	GSCEX LOG11	GSCEX LOG12
0.95363 851	0.7296 6520	0.89 5077 84	0.80809 189	0.90707 967	0.83961 467	0.85916 216	0.57011 320	0.68518 029	0.83682 041	0.89457 007	0.90514 790

Communality estimates are indicative of how much of each variable is accounted for by the underlying factors taken together. A high value of communality means that not much of the variable is left over after whatever the factors represent is taken into consideration. In short the communality estimates are indicative of the relative contribution of each of the variables in the construct. Accordingly Figure 1 shows in the descending order, the relative contribution of each of the twelve variables of the construct Green Supply Chain Execution-Logistics as follows: GSCEXLOG1, GSCEXLOG5, GSCEXLOG12, GSCEXLOG3, GSCEXLOG11, GSCEXLOG7, GSCEXLOG6, GSCEXLOG10, GSCEXLOG4, GSCEXLOG2, GSCEXLOG9 and GSCEXLOG8.

Figure 1. Contribution of the twelve components of Green Supply Chain Execution-Logistics in descending order.

VIII. Conclusion

The aim of this paper was to study the contribution of the twelve variables constituting the construct Green Supply Chain Execution-Logistics in Green Supply Chain Performance measurement. It was found that all the twelve variables in the study were positively correlated with each of the other variables in varying degrees meaning that all the twelve variables involved are oriented towards Green Supply Chain Execution-Logistics. The reliability of the construct Green Supply Chain Execution-Logistics was 0.817626 which is considered to be an indicator of very good internal consistency reliability. All the twelve variables in Table 4 have a reliability ranging from above 0.7 to greater than 0.9 but less than 1. The variables GSCEXLOG1, GSCEXLOG2, GSCEXLOG7, GSCEXLOG9, GSCEXLOG12 have their reliability between 0.8 and 0.9 which is considered to be a very good indicator of internal consistency reliability. The variables GSCEXLOG3, GSCEXLOG4, GSCEXLOG5, GSCEXLOG6, GSCEXLOG8, GSCEXLOG10, GSCEXLOG11 have their reliabilities between 0.7 and 0.8 which is considered to be an acceptable measure of internal consistency reliability [4]. Finally the contribution of the twelve variables of the construct Green Supply Chain Execution-Logistics in descending order of their contribution in the construct is as follows: GSCEXLOG1, GSCEXLOG5, GSCEXLOG11, GSCEXLOG7, GSCEXLOG12, GSCEXLOG3, GSCEXLOG6, GSCEXLOG10, GSCEXLOG4, GSCEXLOG2, GSCEXLOG9 and GSCEXLOG8.

Acknowledgements

I express my heartfelt thanks to Dr. Abdul Razak Honnutagi for permitting me to go ahead with my research work from NITIE, Mumbai though our institute was at its formative stage. Also I acknowledge the patience and support of my wife Yasmin Mohd. Asif Gandhi for bearing with me during my long research hours for years. I also express my thanks for the support and love of my loving children Mohd. Hasan Gandhi and Binish Gandhi. I express my heartfelt thanks to my parents Mr. Indravadan Chimanlal Gandhi and Mrs. Sarmista Indravadan Gandhi for encouraging me and motivating me to complete my research work. I dedicate all my success to them. Special thanks to my guide Dr. Sanjay Sharma from NITIE, Mumbai.

References

- Emmett, S. and Sood, V., Green Supply Chains An Action Manifesto. John Wiles & Sons, 2010, 123-137. [1].
- Gandhi, M.A., A Review of the Indian Automobile Manufacturing Sector, IOSR Journal of Business and Management, 19(3), Ver [2]. II, 2017, 9-15.
- Gandhi, M.A. and Sharma, S., A Review of Research Methodologies Linking Green Supply Chain Practices and Green Supply [3]. Chain Performance, International Journal of Supply Chain Management, 3(4), 2014.
- George, D., and Mallery, M. Using SPSS for Windows step by step: a simple guide and reference. 2003.
- [4]. [5]. Sharma, S., and Gandhi, M.A., Exploring correlations in components of green supply chain practices and green supply chain performance, Competitiveness Review, 26(3), 2016, 332-368.